模块来源
规格参数
工作电压:3.3V-5V
工作电流:< 20mA
输出格式:模拟信号输出
控制接口:ADC
管脚数量:3 Pin(2.54mm间距排针)
以上信息见厂家资料文件
移植过程
我们的目标是将例程移植至开发板上【能够判断当前环境状况的功能】。首先要获取资料,查看数据手册应如何实现读取数据,再移植至我们的工程。
查看资料
灰度传感器包括一个白色高亮发光二极管和一个光敏电阻,由于发光二极管照射到灰度不同的纸张上返回的光是不同的,光敏电阻接收到返回的光,根据光的强度不同,光敏电阻的阻值也不同,从而实现灰度值的测试。
引脚选择
这里选择的引脚见引脚接线表
☠ 特别注意
我们的芯片是 D133EBS
它的ADC参考电压是2.5V
, 最高只能读到2.5V(也就是输入3.3V它显示出来的也是2.5V) ,所以我们需要在外面给它进行分压,将模块输出的最高3.3V电压分压成最高1.65V,然后在程序中将ADC读到的数据乘2
得到真实的数据。
进行分压会损失一定的精度,但这是必要的!
分压计算公式:
原理图结构:
根据计算公式,我们可以算出来分压之后的电压为模块AO引脚输出的一半!!
代码移植
下载为大家准备的驱动代码文件夹,复制到自己工程中\luban-lite\application\rt-thread\helloworld\user-bsp
文件夹下
提示
如果未找到 user-bsp
这个文件夹,说明你未进行模块移植的前置操作。请转移到手册使用必要操作(点击跳转)中进行必要的配置操作!!!
接下来打开自己的工程,开始修改Kconfig文件。
1、在 VSCode 中打开 application\rt-thread\helloworld\Kconfig 文件
2、在该文件的 #endif
前面添加该模块的 Kconfig路径语句
# 灰度传感器
source "application/rt-thread/helloworld/user-bsp/grayscale-sensor/Kconfig"
2
3
menuconfig操作
1、我们 双击 luban-lite
文件夹下的 win_env.bat
脚本打开env工具:
2、输入以下命令列出所有可用的默认配置:
scons --list-def
2
3、选择 d13x_JLC_rt-thread_helloworld
这个配置!这个是我们衡山派开发板的默认配置!输入以下命令即可:
scons --apply-def=7
2
或者
scons --apply-def=d13x_JLC_rt-thread_helloworld_defconfig
2
这两个命令作用是一样的,一个是 文件名 ,一个是 编号 !!!
4、输入以下命令进入menuconfig菜单
scons --menuconfig
2
进入以下界面:
5、选中 Porting code using the LCKFB module
按
Y
选中按
N
取消选中方向键
左右
调整 最下面菜单的选项方向键
上下
调整 列表的选项
回车
执行最下面菜单的选项
6、回车进入 Porting code using the LCKFB module
菜单
7、按方向键 上下
选中 USing grayscale sensor
后按 Y
键,看到前面括号中出现一个 *
号,就可以下一步了。
8、按方向键 左右
选中 <Save>
然后一路回车
,然后 退出
即可
编译
我们 保存并退出menuconfig菜单 之后,输入以下命令进行编译:
scons
或
scons -j16
-j 用来选择参与编译的核心数: 我这里是选择16
大家可以根据自己的电脑来选择
核心越多编译越快
如果写的数量高于电脑本身,那么就自动按照最高可用的来运行!
镜像烧录
编译完成之后会在 \luban-lite\output\d13x_JLC_rt-thread_helloworld\images
文件夹下生成一个 d13x_JLC_v1.0.0.img
镜像文件!
然后我们烧录镜像,具体的教程请查看:镜像烧录(点击跳转🚀)
到这里完成了,请移步到 最后一节 进行移植验证。
工程代码解析
bsp_grayscale.c
/*
* 立创开发板软硬件资料与相关扩展板软硬件资料官网全部开源
* 开发板官网:www.lckfb.com
* 文档网站:wiki.lckfb.com
* 技术支持常驻论坛,任何技术问题欢迎随时交流学习
* 嘉立创社区问答:https://www.jlc-bbs.com/lckfb
* 关注bilibili账号:【立创开发板】,掌握我们的最新动态!
* 不靠卖板赚钱,以培养中国工程师为己任
*/
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <sys/time.h>
#include <rtthread.h>
#include "hal_adcim.h"
#include "rtdevice.h"
#include "aic_core.h"
#include "aic_log.h"
#include "hal_gpai.h"
#include <stdio.h>
#include "aic_hal_gpio.h"
#include "bsp_grayscale.h"
// adc设备名称
#define ADC_DEVICE_NAME "gpai"
// adc通道
#define ADC_CHANNEL 6
// 电压基准
#define VREF_ADC_HSPI 2.5
static struct rt_adc_device *adc_dev = NULL;
/**********************************************************
* 函 数 名 称:Grayscale_Init
* 函 数 功 能:初始化ADC
* 传 入 参 数:无
* 函 数 返 回:RT_EOK成功 -RT_ERROR失败
* 作 者:LCKFB
* 备 注:LP
**********************************************************/
int Grayscale_Init(void)
{
// 获取设备句柄
adc_dev = (struct rt_adc_device *)rt_device_find(ADC_DEVICE_NAME);
if (adc_dev == RT_NULL)
{
LOG_E("Failed to open %s device", ADC_DEVICE_NAME);
return -RT_ERROR;
}
// 使能adc通道
int ret = rt_adc_enable(adc_dev, ADC_CHANNEL);
if(ret != RT_EOK)
{
LOG_E("Failed to [rt_adc_enable] !!!");
return -RT_ERROR;
}
aicos_mdelay(200);
return RT_EOK;
}
/**********************************************************
* 函 数 名 称:Grayscale_DeInit
* 函 数 功 能:清除ADC初始化
* 传 入 参 数:无
* 函 数 返 回:RT_EOK成功 -RT_ERROR失败
* 作 者:LCKFB
* 备 注:LP
**********************************************************/
int Grayscale_DeInit(void)
{
int ret = rt_adc_disable(adc_dev, ADC_CHANNEL);
if(ret != RT_EOK)
{
LOG_E("[%d]:Failed to [rt_adc_disable] !!!", __LINE__);
return -RT_ERROR;
}
return RT_EOK;
}
/**********************************************************
* 函 数 名 称:Grayscale_Get_Value
* 函 数 功 能:获得某个通道的值
* 传 入 参 数:电压存储地址
* 函 数 返 回:RT_EOK成功 -RT_ERROR失败
* 作 者:LCKFB
* 备 注:ADC每个时间
**********************************************************/
int Grayscale_Get_Value(float *Voltage)
{
int value = 0; // 累计读取的数据
int count = 5; // 采集次数
int valid_count = 0; // 有效读取次数
int return_Value = 0; // 分压之后还原的数据
while(count--)
{
uint32_t temp = rt_adc_read(adc_dev, ADC_CHANNEL);
if(temp < 4096) // 确保不会把校验数据计算进来
{
// rt_kprintf("[%d]adc temp = [%d]\n",valid_count+1,temp);
value += temp;
valid_count++;
}
aicos_mdelay(5); // 延时5ms
}
// 如果没有有效的读取
if(!valid_count)
{
return -RT_ERROR; // 返回一个错误代码
}
return_Value = value / valid_count; // 计算平均值
/* 因为电压分压为了二分之一所以需要还原 */
*Voltage = (( VREF_ADC_HSPI / 4095.0 ) * return_Value) * 2; // 换算成电压
return RT_EOK;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
bsp_grayscale.h
/*
* 立创开发板软硬件资料与相关扩展板软硬件资料官网全部开源
* 开发板官网:www.lckfb.com
* 文档网站:wiki.lckfb.com
* 技术支持常驻论坛,任何技术问题欢迎随时交流学习
* 嘉立创社区问答:https://www.jlc-bbs.com/lckfb
* 关注bilibili账号:【立创开发板】,掌握我们的最新动态!
* 不靠卖板赚钱,以培养中国工程师为己任
*/
#ifndef __BSP_GRAYSCALE_H__
#define __BSP_GRAYSCALE_H__
#include "stdio.h"
int Grayscale_Init(void);
int Grayscale_DeInit(void);
int Grayscale_Get_Value(float *Voltage);
#endif
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Kconfig
这个是一个menuconfig中的选项,如果在菜单中选中该选项,就会在rtconfig.h
中定义一个语句,用来if判断条件编译之类的。
config LCKFB_GRAYSCALE_SENSOR
bool "USing grayscale sensor"
select AIC_USING_GPAI
select AIC_USING_GPAI6
default n
help
More information is available at: https://wiki.lckfb.com/
2
3
4
5
6
7
8
9
10
11
12
13
SConscript
自动化构建文件,如果定义了 LCKFB_GRAYSCALE_SENSOR
和 USING_LCKFB_TRANSPLANT_CODE
就自动编译当前目录下的文件!!
Import('RTT_ROOT')
Import('rtconfig')
import rtconfig
from building import *
cwd = GetCurrentDir()
CPPPATH = [cwd]
src = []
if GetDepend('LCKFB_GRAYSCALE_SENSOR') and GetDepend('USING_LCKFB_TRANSPLANT_CODE'):
src = Glob(os.path.join(cwd, '*.c'))
group = DefineGroup('lckfb-grayscale-sensor', src, depend = [''], CPPPATH = CPPPATH)
Return('group')
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
test_grayscale_sensor.c
这个文件定义了一个用于处理灰度传感器的线程,初始化了灰度传感器,并设置了线程的优先级、栈大小和时间片。 线程的主要任务是周期性地读取灰度传感器的模拟输出值,并将其转换为电压值。读取到的数据会被打印到控制台。通过命令行接口,用户可以启动和退出这个线程来测试灰度传感器的功能。
线程入口函数逻辑
- 定义一个循环次数变量
while_count
,用于控制读取次数。 - 在一个无限循环中,执行以下任务:
- 调用
Grayscale_Get_Value
函数读取传感器的模拟输出值,并将其转换为电压值。 - 判断读取操作是否成功,如果失败则打印错误信息。
- 如果读取成功,将电压值乘以100以保留两位小数,并打印电压值。
- 每次循环结束时,线程会休眠1000毫秒。
- 当循环次数达到100次时,提示用户可以通过输入命令来退出传感器测试,并重置循环次数。
- 在两次读取之间,线程会额外休眠2000毫秒。
- 调用
灰度传感器启动函数逻辑
- 调用
Grayscale_Init
函数初始化灰度传感器。 - 如果初始化成功,创建名为"grayscale_thread"的线程,入口函数为
grayscale_thread_entry
,无参数,设置栈大小、优先级和时间片。 - 如果线程创建成功,启动线程。
提示
MSH_CMD_EXPORT
宏将test_grayscale_sensor
和test_exit_grayscale_sensor
函数导出为RT-Thread命令行接口的命令,这样用户可以在RT-Thread的命令行中直接运行以下命令来控制灰度传感器的行为:
grayscale sensor test
启动灰度传感器测试。exit grayscale sensor test
停止灰度传感器线程,并进行去初始化。
退出函数逻辑
- 调用
rt_thread_delete
函数尝试删除grayscale_thread
线程。 - 如果删除成功,调用
Grayscale_DeInit
函数去初始化灰度传感器。 - 如果去初始化成功,打印退出成功的提示信息。
- 如果任何步骤失败,打印相应的错误信息。
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <sys/time.h>
#include <rtthread.h>
#include "rtdevice.h"
#include "aic_core.h"
#include "aic_hal_gpio.h"
#include "bsp_grayscale.h"
#define THREAD_PRIORITY 25 // 线程优先级
#define THREAD_STACK_SIZE 1024 // 线程大小
#define THREAD_TIMESLICE 25 // 时间片
static rt_thread_t grayscale_thread = RT_NULL; // 线程控制块
// 线程入口函数
static void grayscale_thread_entry(void *param)
{
int while_count = 1;
while(while_count++)
{
/* 电压数值缓存区 */
float Voltage = 0;
/* 判断是否读取成功 */
if(RT_EOK != Grayscale_Get_Value(&Voltage))
{
LOG_E("Failed to Grayscale_Get_Value !!!");
}
else
{
/* 将数字扩大100倍 */
uint32_t temp_voltage = Voltage * 100;
/* 打印数据,分别处理小数点前的数据和后面的数据! */
rt_kprintf("\nRead Voltage_Value = %d.%02dV\n", temp_voltage/100, temp_voltage%100); // 电压
}
/* 循环提示 */
if(while_count >= 100)
{
while_count = 1;
rt_kprintf("\nType [test_exit_grayscale_sensor] command to exit \n");
rt_kprintf("Note: Pressing [TAB] as you type will autocomplete the command\n");
rt_thread_mdelay(2000);
}
rt_thread_mdelay(1000);
}
}
static void test_grayscale_sensor(int argc, char **argv)
{
int ret = Grayscale_Init();
if(ret != RT_EOK)
{
LOG_E("Failed to [Grayscale_Init] !!!");
return;
}
/* 创建线程,名称是 grayscale_thread,入口是 grayscale_thread_entry */
grayscale_thread = rt_thread_create("grayscale_thread",
grayscale_thread_entry, RT_NULL,
THREAD_STACK_SIZE,
THREAD_PRIORITY, THREAD_TIMESLICE);
/* 如果获得线程控制块,启动这个线程 */
if (grayscale_thread != RT_NULL)
rt_thread_startup(grayscale_thread);
}
// 导出函数为命令
MSH_CMD_EXPORT(test_grayscale_sensor, grayscale sensor test);
/* 退出函数 */
void test_exit_grayscale_sensor(void)
{
int ret = rt_thread_delete(grayscale_thread);
if(ret != RT_EOK)
{
LOG_E("failed to test_exit_grayscale_sensor !!");
return;
}
ret = Grayscale_DeInit();
if(ret != RT_EOK)
{
LOG_E("Failed to [Grayscale_DeInit] !!!");
return;
}
else
{
rt_kprintf("\nGrayscale_DeInit successful!!!\n");
}
rt_kprintf("\n========grayscale sensor exit successful !!========\n");
}
// 导出函数为命令
MSH_CMD_EXPORT(test_exit_grayscale_sensor, exit grayscale sensor test);
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
移植验证
我们使用串口调试,将 USB转TTL模块 连接到衡山派开发板上面!!
具体的教程查看:串口调试(点击跳转🚀)
串口波特率默认为
115200
我们在输入下面的命令运行该模块的线程:
输入的时候按下
TAB键
会进行命令补全!!
test_grayscale_sensor
模块上电效果: