雨滴传感器主要是用来检测是否下雨及雨量的大小。主要用于汽车智能灯光(AFS)系统、汽车自动雨刷系统、智能车窗系统。
该雨滴传感器基本上是一块板,上面以线形形式涂覆镍。雨滴传感器常见的工作原理是通过检测水滴的导电性来判断是否下雨。它是利用两个电极之间的电导性变化来测量水滴的存在。这两个电极之间会有一个空气间隙,正常状态下是断路状态。当水滴接触到电极上时,水滴的导电性会导致电流通过水滴形成电流回路,从而改变电极之间的电阻值。也就改变了其两端的压降。
模块来源
采购链接:
雨滴感应模块 雨水传感器下雨感知模块天气模块 水位显示模块水滴
资料下载链接:
https://pan.baidu.com/s/10bjbsmcOh2N7YGDS3PquPw
资料提取码:psfm
规格参数
工作电压:3.3V-5V
探测距离:1米
输出方式: DO接口为数字量输出 AO接口为模拟量输出
读取方式:ADC与数字量(0和1)
管脚数量:4 Pin(2.54mm间距排针)
以上信息见厂家资料文件
移植过程
我们的目标是将例程移植至开发板上【判断当前雨水采集板上是否有水的功能】。首先要获取资料,查看数据手册应如何实现读取数据,再移植至我们的工程。
查看资料
该模块基于LM393运算放大器。它包括电子模块和“收集”雨滴的印刷电路板。当雨滴积聚在电路板上时,它们会形成并联电阻路径,该路径可通过运算放大器进行测量。
控制板上有两个指示灯,电源指示灯PWR-LED和输出信号指示灯DO-LED。电源指示灯在通电后常亮,没有雨的时候出信号指示灯不亮;雨滴上去,候出信号指示灯亮。雨滴板和控制板是分开的,方便将线引出,大面积的雨滴板,更有利于检测到雨水。
控制板上有两个输出,数字输出DO,模拟输出AO。接上5V电源电源灯亮,感应板上没有水滴时,DO输出为高电平,滴上一滴水,DO输出为低电平,刷掉上面的水滴,又恢复到输出高电平状态,灵敏度可以通过蓝色的可变电阻调节。
AO模拟输出,连接到单片机的的模拟输入口,通过比对模拟值转化为的数字值大小,可以检测滴在上面的雨量大小,雨水越大,电阻值越小,模拟值转化为的数字值越大。 不同的值对应是降雨量的多少毫米,则需要实体测量,雨滴板的放置方式不同结果都不同,这里不作研究。
其对应的原理图,AO输出为雨滴传感器直接输出的电压,所以为模拟量;DO为经过LM393进行电压比较后,输出高低电平,所以为数字量。具体原理见光敏电阻光照传感器章节的资料。
因此DO引脚可以配置为GPIO的输入模式,AO引脚需要配置为ADC模拟输入模式。
引脚选择
这里选择的引脚见引脚接线表
☠ 特别注意
我们的芯片是 D133EBS
它的ADC参考电压是2.5V
, 最高只能读到2.5V(也就是输入3.3V它显示出来的也是2.5V) ,所以我们需要在外面给它进行分压,将模块输出的最高3.3V电压分压成最高1.65V,然后在程序中将ADC读到的数据乘2
得到真实的数据。
进行分压会损失一定的精度,但这是必要的!
分压计算公式:
原理图结构:
根据计算公式,我们可以算出来分压之后的电压为模块AO引脚输出的一半!!
代码移植
下载为大家准备的驱动代码文件夹,复制到自己工程中\luban-lite\application\rt-thread\helloworld\user-bsp
文件夹下
提示
如果未找到 user-bsp
这个文件夹,说明你未进行模块移植的前置操作。请转移到手册使用必要操作(点击跳转)中进行必要的配置操作!!!
接下来打开自己的工程,开始修改Kconfig文件。
1、在 VSCode 中打开 application\rt-thread\helloworld\Kconfig 文件
2、在该文件的 #endif
前面添加该模块的 Kconfig路径语句
# 雨滴传感器
source "application/rt-thread/helloworld/user-bsp/rain-sensor/Kconfig"
2
menuconfig操作
1、我们 双击 luban-lite
文件夹下的 win_env.bat
脚本打开env工具:
2、输入以下命令列出所有可用的默认配置:
scons --list-def
3、选择 d13x_JLC_rt-thread_helloworld
这个配置!这个是我们衡山派开发板的默认配置!输入以下命令即可:
scons --apply-def=7
或者
scons --apply-def=d13x_JLC_rt-thread_helloworld_defconfig
这两个命令作用是一样的,一个是 文件名 ,一个是 编号 !!!
4、输入以下命令进入menuconfig菜单
scons --menuconfig
进入以下界面:
5、选中 Porting code using the LCKFB module
按
Y
选中按
N
取消选中方向键
左右
调整 最下面菜单的选项方向键
上下
调整 列表的选项
回车
执行最下面菜单的选项
6、回车进入 Porting code using the LCKFB module
菜单
7、按方向键 上下
选中 USing flame sensor
后按 Y
键,看到前面括号中出现一个 *
号,就可以下一步了。
8、按方向键 左右
选中 <Save>
然后一路回车
,然后 退出
即可
编译
我们 保存并退出menuconfig菜单 之后,输入以下命令进行编译:
scons
或
scons -j16
-j 用来选择参与编译的核心数: 我这里是选择16
大家可以根据自己的电脑来选择
核心越多编译越快
如果写的数量高于电脑本身,那么就自动按照最高可用的来运行!
镜像烧录
编译完成之后会在 \luban-lite\output\d13x_JLC_rt-thread_helloworld\images
文件夹下生成一个 d13x_JLC_v1.0.0.img
镜像文件!
然后我们烧录镜像,具体的教程请查看:镜像烧录(点击跳转🚀)
到这里完成了,请移步到 最后一节 进行移植验证。
工程代码解析
bsp_raindrop.c
/*
* 立创开发板软硬件资料与相关扩展板软硬件资料官网全部开源
* 开发板官网:www.lckfb.com
* 文档网站:wiki.lckfb.com
* 技术支持常驻论坛,任何技术问题欢迎随时交流学习
* 嘉立创社区问答:https://www.jlc-bbs.com/lckfb
* 关注bilibili账号:【立创开发板】,掌握我们的最新动态!
* 不靠卖板赚钱,以培养中国工程师为己任
*/
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <sys/time.h>
#include <rtthread.h>
#include "hal_adcim.h"
#include "rtdevice.h"
#include "aic_core.h"
#include "aic_log.h"
#include "hal_gpai.h"
#include <stdio.h>
#include "aic_hal_gpio.h"
#include "bsp_raindrop.h"
// adc设备名称
#define ADC_DEVICE_NAME "gpai"
// adc通道
#define ADC_CHANNEL 6
// 电压基准
#define VREF_ADC_HSPI 2.5
// DO引脚号获取
#define DO_PIN rt_pin_get("PE.14")
// DO引脚状态读取
#define GET_DO_IN rt_pin_read(DO_PIN)
static struct rt_adc_device *adc_dev = NULL;
/**********************************************************
* 函 数 名 称:RAIN_Init
* 函 数 功 能:初始化ADC
* 传 入 参 数:无
* 函 数 返 回:无
* 作 者:LC
* 备 注:LP
**********************************************************/
int RAIN_Init(void)
{
// 获取设备句柄
adc_dev = (struct rt_adc_device *)rt_device_find(ADC_DEVICE_NAME);
if (adc_dev == RT_NULL)
{
LOG_E("Failed to open %s device", ADC_DEVICE_NAME);
LOG_E("file: %s", __FILE__);
LOG_E("line: %s\n", __LINE__);
return RT_ERROR;
}
// 使能adc通道
int ret = rt_adc_enable(adc_dev, ADC_CHANNEL);
if(ret != RT_EOK)
{
LOG_E("Failed to [rt_adc_enable] !!!");
LOG_E("file: %s", __FILE__);
LOG_E("line: %s\n", __LINE__);
return RT_ERROR;
}
aicos_mdelay(200);
// 设定DO引脚的模式
rt_pin_mode(DO_PIN, PIN_MODE_INPUT);
return RT_EOK;
}
/**********************************************************
* 函 数 名 称:RAIN_DeInit
* 函 数 功 能:清除ADC初始化
* 传 入 参 数:无
* 函 数 返 回:无
* 作 者:LC
* 备 注:LP
**********************************************************/
int RAIN_DeInit(void)
{
int ret = rt_adc_disable(adc_dev, ADC_CHANNEL);
if(ret != RT_EOK)
{
LOG_E("Failed to [rt_adc_disable] !!!");
LOG_E("file: %s", __FILE__);
LOG_E("line: %s\n", __LINE__);
return RT_ERROR;
}
return RT_EOK;
}
/**********************************************************
* 函 数 名 称:RAIN_Get_Value
* 函 数 功 能:获得某个通道的值
* 传 入 参 数:无
* 函 数 返 回:读取的电压
* 作 者:LC
* 备 注:ADC每个时间
**********************************************************/
float RAIN_Get_Value(void)
{
int value = 0; // 累计读取的数据
int count = 5; // 采集次数
int valid_count = 0; // 有效读取次数
int return_Value = 0; // 分压之后还原的数据
float voltage_calculation = 0.0; // 电压计算缓存区
while(count--)
{
uint32_t temp = rt_adc_read(adc_dev, ADC_CHANNEL);
if((temp != 0) && (temp < 4096)) // 确保不会把校验数据计算进来
{
// rt_kprintf("[%d]adc temp = [%d]\n",valid_count+1,temp);
value += temp;
valid_count++;
}
aicos_mdelay(5); // 延时5ms
}
// 如果没有有效的读取
if(!valid_count)
{
return -RT_ERROR; // 返回一个错误代码
}
return_Value = value / valid_count; // 计算平均值
voltage_calculation = ( VREF_ADC_HSPI / 4095.0 ) * return_Value; // 换算成电压
// 返回电压值
// 因为电压分压为了二分之一所以需要还原
return voltage_calculation * 2;
}
/******************************************************************
* 函 数 名 称:RAIN_Get_Percentage_value
* 函 数 说 明:返回百分比
* 函 数 形 参:无
* 函 数 返 回:返回百分比
* 作 者:LC
* 备 注:
******************************************************************/
int RAIN_Get_Percentage_value(float value)
{
float voltage_max = 3.3f;
int Percentage_value = 0;
if(value > 3.3f)
{
voltage_max = value;
}
//百分比 = ( 当前值 / 最大值 )* 100
Percentage_value = (value / voltage_max ) * 100.0f;
return Percentage_value;
}
/******************************************************************
* 函 数 名 称:Get_DO_In
* 函 数 说 明:读取DO引脚的电平状态
* 函 数 形 参:无
* 函 数 返 回:DO引脚状态
* 作 者:LC
* 备 注:无
******************************************************************/
int RAIN_Get_DO_In(void)
{
if( GET_DO_IN == 1)
{
return 1;
}
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
bsp_raindrop.h
/*
* 立创开发板软硬件资料与相关扩展板软硬件资料官网全部开源
* 开发板官网:www.lckfb.com
* 文档网站:wiki.lckfb.com
* 技术支持常驻论坛,任何技术问题欢迎随时交流学习
* 嘉立创社区问答:https://www.jlc-bbs.com/lckfb
* 关注bilibili账号:【立创开发板】,掌握我们的最新动态!
* 不靠卖板赚钱,以培养中国工程师为己任
*/
#ifndef __BSP_RAINDROP_SENSOR_H__
#define __BSP_RAINDROP_SENSOR_H__
#include "stdio.h"
int RAIN_Init(void);
int RAIN_DeInit(void);
float RAIN_Get_Value(void);
int RAIN_Get_Percentage_value(float value);
int RAIN_Get_DO_In(void);
#endif
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Kconfig
这个是一个menuconfig中的选项,如果在菜单中选中该选项,就会在rtconfig.h
中定义一个语句,用来if判断条件编译之类的。
config LCKFB_RAIN_SENSOR
bool "USing rain sensor"
select AIC_USING_GPAI
select AIC_USING_GPAI6
default n
help
More information is available at: https://wiki.lckfb.com/
2
3
4
5
6
7
8
SConscript
自动化构建文件,如果定义了 LCKFB_RAIN_SENSOR
和 USING_LCKFB_TRANSPLANT_CODE
就自动编译当前目录下的文件!!
Import('RTT_ROOT')
Import('rtconfig')
import rtconfig
from building import *
cwd = GetCurrentDir()
CPPPATH = [cwd]
src = []
if GetDepend('LCKFB_RAIN_SENSOR') and GetDepend('USING_LCKFB_TRANSPLANT_CODE'):
src = Glob(os.path.join(cwd, '*.c'))
group = DefineGroup('lckfb-rain-sensor', src, depend = [''], CPPPATH = CPPPATH)
Return('group')
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
test_rain_sensor.c
线程入口函数逻辑 (rain_thread_entry
)
- 初始化一个循环计数器
while_count
。 - 进入一个无限循环,每次循环时:
- 调用
RAIN_Get_Value
函数读取雨滴传感器的模拟输出(AO)电压值。 - 将电压值放大100倍以便于打印小数点后两位。
- 打印读取的电压值和对应的百分比。
- 检查数字输出
RAIN_Get_DO_In
,如果为0,则表示检测到雨滴,打印警告信息。 - 如果
while_count
达到100,重置计数器并提示用户如何退出传感器测试。 - 每次循环结束后,线程挂起1000毫秒。
- 调用
测试雨滴传感器函数 (test_rain_sensor
)
- 调用
RAIN_Init
初始化雨滴传感器。 - 如果初始化失败,打印错误信息并返回。
- 创建并启动线程
rain_thread
。
退出雨滴传感器测试函数 (test_exit_rain_sensor
)
- 删除线程
rain_thread
。 - 调用
RAIN_DeInit
去初始化雨滴传感器。 - 如果去初始化失败,打印错误信息并返回。
- 打印退出成功的信息。
这个文件提供了一个用于测试雨滴传感器功能的线程,可以通过命令行接口来启动和停止这个测试。
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <sys/time.h>
#include <rtthread.h>
#include "rtdevice.h"
#include "aic_core.h"
#include "aic_hal_gpio.h"
#include "bsp_raindrop.h"
#define THREAD_PRIORITY 25 // 线程优先级
#define THREAD_STACK_SIZE 4096 // 线程大小
#define THREAD_TIMESLICE 20 // 时间片
static rt_thread_t rain_thread = RT_NULL; // 线程控制块
// 线程入口函数
static void rain_thread_entry(void *param)
{
int while_count = 1;
while(while_count++)
{
float adc_voltage = RAIN_Get_Value();
uint32_t value = adc_voltage * 100;
rt_kprintf("\n");
rt_kprintf("Read AO = %d.%02dV\n", value/100, value%100); // 电压
rt_kprintf("Percentage = %d%%\n",RAIN_Get_Percentage_value(adc_voltage)); // 百分比
if(RAIN_Get_DO_In() == 0)
{
rt_kprintf("DO!!!\n");
}
rt_kprintf("\n");
if(while_count >= 100)
{
while_count = 1;
rt_kprintf("\nType [test_exit_rain_sensor] command to exit \n");
rt_kprintf("Note: Pressing [TAB] as you type will autocomplete the command\n");
rt_thread_mdelay(2000);
}
rt_thread_mdelay(1000);
}
}
static void test_rain_sensor(int argc, char **argv)
{
int ret = RAIN_Init();
if(ret != RT_EOK)
{
LOG_E("Failed to [RAIN_Init] !!!");
return;
}
/* 创建线程,名称是 rain_thread,入口是 rain_thread_entry */
rain_thread = rt_thread_create("rain_thread",
rain_thread_entry, RT_NULL,
THREAD_STACK_SIZE,
THREAD_PRIORITY, THREAD_TIMESLICE);
/* 如果获得线程控制块,启动这个线程 */
if (rain_thread != RT_NULL)
rt_thread_startup(rain_thread);
}
// 导出函数为命令
MSH_CMD_EXPORT(test_rain_sensor, rain sensor test);
/* 退出函数 */
void test_exit_rain_sensor(void)
{
int ret = rt_thread_delete(rain_thread);
if(ret != RT_EOK)
{
LOG_E("failed to test_exit_rain_sensor !!");
return;
}
ret = RAIN_DeInit();
if(ret != RT_EOK)
{
LOG_E("Failed to [RAIN_DeInit] !!!");
return;
}
else
{
rt_kprintf("\nRAIN_DeInit successful!!!\n");
}
rt_kprintf("\n========rain sensor exit successful !!========\n");
}
// 导出函数为命令
MSH_CMD_EXPORT(test_exit_rain_sensor, exit rain sensor test);
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
移植验证
我们使用串口调试,将 USB转TTL模块 连接到衡山派开发板上面!!
具体的教程查看:串口调试(点击跳转🚀)
串口波特率默认为
115200
我们在输入下面的命令运行该模块的线程:
输入的时候按下
TAB键
会进行命令补全!!
test_rain_sensor
模块上电效果: